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We introduce a hybrid approach that combines deep image prior (DIP) with generative adversarial networks
(GANs) to improve the resolution of single-pixel imaging (SPI). SPI excels in challenging conditions such as low
light or limited spectral camera availability, particularly in the near-infrared (NIR) range from 850 to 1550 nm. By
employing an unsupervised image super-resolution technique based on DIP, we reduce the need for extensive direct
SPI image datasets. This innovation simplifies enhancing image quality in specific NIR bands. We provide numeri-
cal and experimental evidence to support our method and detail the enhancements in UNet and GAN architectures
across four neural network configurations. © 2025 Optica Publishing Group. All rights, including for text and data mining

(TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Single-pixel imaging (SPI) is an advanced imaging technology
that captures images using only a single photodetector [1].
This innovative technique utilizes a series of spatial modulation
patterns to acquire images [2] meticulously. SPI has proven to be
highly versatile, adapting seamlessly to various spectrum bands
across various applications, as documented in the literature.
These applications include 2D reconstruction in bands such
as X-rays [3], ghost imaging [4,5], infrared [6], terahertz [7],
underwater imaging [8], imaging in scattering environments
[9], and three-dimensional imaging [10].

In SPI, achieving a high-quality image typically requires
acquiring N × N measurements to achieve a full sampling
rate of 100%. However, current limitations exist due to the
constraints of commercial spatial light modulators (SLMs),
such as the digital micromirror device (DMD), with a frequency
range of 10–30 kHz [2], or array LEDs, which allow projec-
tion frequencies greater than 100 kHz [11]. These limitations
pose a bottleneck for SPI applications, where the objective is
to implement reconstruction methods with fewer samples to
obtain low-resolution images. The primary challenge in SPI
lies in developing strategies that can produce images of accept-
able quality while operating at a reduced sampling rate [12].
Numerous studies have made significant efforts to address the
challenge of image recovery. For instance, researchers have
leveraged the inherent sparsity in natural scenes and applied
techniques like compressed sensing (CS). Moreover, the use of
orthogonal sub-sampling methods, such as the deterministic
Hadamard [13], Fourier [14], wavelet bases [15], and deep

learning [2], has shown promise in reconstructing high-quality
images, even below the Nyquist limit [16].

Due to the inherent low quality, artifacts, and noise present in
SPI images, deep learning techniques offer promising solutions
for their enhancement, including denoising [17], deblurring
[18], and super-resolution [19]. Various models have been
employed to tackle these challenges, such as convolutional
neural networks (CNNs) [20], generative adversarial net-
works (GANs) [21], and deep convolutional autoencoder
networks (DCANs) [22,23]. However, collecting dataset images
from various visible spectrum bands presents significant chal-
lenges, making traditional training-based methods less feasible.
Unsupervised image super-resolution techniques [24] offer a
new perspective on improving image quality without the need
for extensive training datasets. A particularly notable method
in this category is deep image prior (DIP) [25], which uses
untrained neural networks as a flexible form of image prior.

In DIP, an image is represented as the output of a neural net-
work, and an optimization process refines the network’s weights
to minimize the discrepancy between the predicted image and
the observed measurements. This approach exploits the inher-
ent structure of CNNs as an image prior, eliminating the need
for ground-truth images and large datasets typically required
for neural network training. As a result, DIP produces refined,
detailed, and more natural-looking images with enhanced
visual quality. DIP has proven effective in various image-related
inverse problems, including super-resolution [25], inpainting
[26], deblurring [27], compressive sensing [28], phase retrieval
[29], and computer-generated holography [30]. While DIP
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effectively enhances resolution, sharpness, and overall image
appearance, it faces challenges when dealing with noisy low-
resolution images. Recent advancements have addressed this
issue by integrating noise estimation techniques with DIP,
utilizing GANs and self-supervised learning (SSL) [31].

To improve the quality of 2D SPI image reconstruction in
the near-infrared (NIR) imaging application spectrum, we
comprehensively evaluated various strategies. The wavelength
range of focus was 850–1550 nm. The review was conducted,
taking into account limitations imposed by the camera design.
We incorporated the deep prior method and employed neural
networks such as U2Net, GAN, StyleGAN, and StyleGAN2
[32–34]. Furthermore, we developed a novel architecture that
combines different UNet models with GAN and StyleGAN
components. To assess the improvement in 2D image quality,
we study rigorous metrics such as a peak signal-to-noise ratio
(PSNR) greater than 20 dB, a structural similarity index meas-
ure (SSIM) exceeding 0.5, and a Fréchet inception distance
(FID) below 40, as detailed in Ref. [35]. Our results show valu-
able insights into the performance, computational efficiency,
and quality of the reconstructed 2D SPI images [11]. The main
contributions can be summarized as follows:

• A super-resolution deep prior model for SPI is proposed,
based on the combination of UNet and GAN networks [21,36].
The performance of the model is validated through both
simulations and real experiments.

• A novel end-to-end SPI reconstruction network has been
developed to more effectively capture features in SPI measure-
ments, leading to the reconstruction of high-quality images
from under-sampled measurements.

• By utilizing a deep prior model, a high-resolution
(HR) SPI image is generated, enhancing the quality of the
low-resolution (LR) SPI image.

The paper is structured as follows: Section 2 provides a
detailed discussion of the proposed SPI reconstruction method,
including an overview of each system component. Section 3
outlines the methodology for super-resolution using deep
prior. Section 4 presents the integration of DIP with GANs for
enhanced SR. The experimental results and discussions can be
found in Section 5. Finally, Section 6 concludes the paper.

2. FUNDAMENTAL CONCEPTS IN
SINGLE-PIXEL IMAGE RECONSTRUCTION

A SPI camera captures images by lighting a scene with care-
fully structured light patterns. Simultaneously, it measures the
corresponding intensity correlations using a bucket detector
without spatial resolution. One crucial component of the SPI
camera is the utilization of SLMs, such as the DMD, as illus-
trated in Fig. 1. SPI technology offers two distinct architectural
approaches: structured detection, as depicted in Fig. 1(a), and
structured illumination, as showcased in Fig. 1(b) [2].

Structured detection is a process that involves illuminating
an object with light from a source. The reflected light is then
directed onto a SLM. Detection is carried out using a bucket
detector. Structured illumination, conversely, involves using
modulated light patterns, such as Hadamard sequences, random
patterns, or other variations, denoted as pattern modulation

Fig. 1. Two different approaches applied to SPI: (a) structured
detection and (b) structured illumination [2].

8 [2]. This modulated light is used to illuminate the object,
O (which can be defined as a 2D matrix MxN), and a bucket
detector detects the reflected light. The bucket detector con-
verts the reflected light into an electrical signal, Si [as shown in
Eq. (1)] [2]:

Si = α

M∑
x=1

N∑
y=1

O(x , y )8i (x , y ), (1)

where the constant factor α depends on the optoelectronic
response of the photodetector. The image I (x , y ) is compu-
tationally reconstructed from the captured signal Si and the
corresponding pattern8i , as represented in Eq. (2) [2]:

I (x , y )= α
M∑

x=1

N∑
y=1

Si8i (x , y ). (2)

In our application, we employed Hadamard-like pattern [37]
sequences generated through active illumination using an array
of 32× 32 near-infrared light emitting diodes (NIR-LEDs)
that emit radiation with a peak wavelength of 1550 nm for this
study. The NIR-LED array is perpendicular to the lens’s focal
length to project the light pattern to infinity. However, due to
the array’s size, the patterns are projected at distances ranging
from 0.3 to 3 m.

A. Experimental Setup: SPI Camera

Our research proposes employing structured illumination to
enhance image quality in challenging lighting conditions, such
as solid backlight and stray light interference. To accomplish
this, we leverage a time-of-flight (TOF) system operating at a
wavelength of 850 nm in conjunction with an InGaAs pho-
todiode as the bucket detector, which operates at 1550 nm.
The architecture introduced in this study, named NIR-SPI,
comprises two primary components. First, we utilize critical
elements based on the single-pixel principle for image genera-
tion. These components consist of the InGaAs photodetector,
specifically the Thorlabs FGA015 diode operating at 1550 nm,
an array of NIR-LEDs for emission, a time-of-flight system, and
an analog-to-digital converter (ADC) (see Fig. 2). Second, we
integrate a subsystem responsible for processing the electrical
output signal acquired from the bucket detector. The signal is
digitized using the ADC, and the resulting data are processed by
an embedded system-on-module (SOM) [38], specifically the
GPU-Jetson Xavier NX as depicted in Fig. 2. The SOM carries
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Fig. 2. Comprehensive block diagram of the proposed vision system
measures 11 cm× 11 cm× 14 cm in size. It encompasses multiple
components, including a lens with a 20 cm focal length. The system
has a weight of 1.2 kg and a power consumption of 45 W. In the initial
stage module, three key elements are present: a photodiode, an active
illumination source, and an InGaAs photodetector diode (FGA015),
which is employed for the time-of-flight (TOF) system, as detailed in
Ref. [2].

out several tasks, including generating Hadamard-like patterns
and processing the digitized data from the ADC. We implement
the OMP-GPU algorithm [39] on the SOM to facilitate 2D
image generation. Additionally, we provide the processing
times for each stage involved in the 2D image reconstruction
process. For a more in-depth exploration of the SPI camera, we
recommend interested readers to consult Ref. [11].

B. 2D SPI Algorithm Reconstruction Method

The reconstruction of a 2D image begins with an SPI image
reconstructed at low sampling rates to maintain processing
times within the range of 50–80 ms. This low-resolution SPI
image is then improved by incorporating data from ITOF using
a technique outlined in a previous study [39]. Initially, the
orthogonal matching pursuit (OMP) algorithm is employed
to reconstruct the SPI image. The OMP algorithm utilizes
Cholesky methods to efficiently compute (8T8)−1 for
matrix inversion. During the Cholesky factorization proc-
ess [see Eq. (3)], it is imperative to precompute the Gram
matrix G =8T8 and ensure its symmetry and positivity.
Subsequently, the initial projection p0

=8T y is calculated
following the steps outlined in the OMP-GPU algorithm,
specifically at line 3:

Lnew =

[
L 0
wT
√

1−wTw

]
. (3)

Equation (3) represents the Cholesky decomposition as a fac-
torization of a Hermitian, positive-definite matrix into the
product of a lower triangular matrix and its conjugate trans-
pose. This matrix can be broken down into two triangular
matrices through the Cholesky decomposition, represented as
L LT , where L is the lower triangular Cholesky factor (refer to
Algorithm 1, line 8). We describe the system as L LT x =8T ȳ ,
where b =8 ȳ . This setup is then approached as a triangu-
lar system using Lu = b and LT x = u (refer to Algorithm 1,
line 10). To derive L , we apply the equation in Eq. (3) [39],
and define w= L−18T (see Algorithm 1, line 7). The recon-
structed signal xi implements a stopping criterion that involves
comparing the residual norm to a threshold ε, thus bypassing
the direct calculation of the residual δ (refer to Algorithm 1, lines

Algorithm 1. OMP-GPU algorithm [39], Input:
OMP-GPU algorithm input data: Hadamard patterns 8,
input signal y, Output: OMP-GPU algorithm output
data: sparse representation x that fulfils the relation
y≈8x

1: procedure OMP-GPU(8, y):
2: set: L= [1], i= 1
3: set: p0

=8T y , ε= y y T , G =8T8, p = p0

4: while εi−1 > ε do
5: M = arg maxK |p| B Finding the new atom
6: if M > 1 then
7: w= {L i−1w= G i−1,K } B Solverw

8: L i =

[
L i−1 0
wT
√

1−wTw

]
BUpdate of Cholesky

9:
10: xi = {L LT xi = p o

} B Solver xi

11: β = Gxi BMatrix-sparse-vector product for each path
12: p = p o

− β

13: δi
= x Tβ BCalculate error

14: εi
= εi−1

− δi
+ δi−1 BCalculate norm ε

15: i= i+ 1 B increasing iteration
16: return x

11–13). To improve the algorithm efficiency, the use of
Compute Unified Device Architecture (CUDA) is rec-
ommended for parallelizing the reconstruction steps (see
Algorithm 1). This enhanced image is then combined with the
ITOF sensor data to produce an image of 32× 32.

C. SPI Imaging Acquisition Protocol

In developing the SPC camera, we focused on two critical
parameters essential for capturing SPI images: the exposure
time of the detector Text and the frequency of pattern projection
Fpatterns. We utilized a theoretical model of the NIR-SPI system
outlined in Ref. [11] to set the appropriate exposure time. This
model considers various factors, such as the maximum mea-
surement distance, scattering effects, and correlation between
photon incidence on the sensor and the noise threshold. We
established the exposure time, denoted as Text, to vary between
80 and 120 µs, which is optimal for measurement distances
ranging from 0.3 to 1 m. From this exposure time, we derived
that the minimum frequency for the ADC must be at least
60 kHz. The frequency patterns are based on Eq. (4) [40],
employing the parameter Fmin to assess efficiency at the indi-
vidual pixel level. The ideal configuration occurs at F = Fmin

(where F denotes the actual pixel count of the sensor), facili-
tating the highest ADC measurement rate at the lowest sensor
resolution FADC. This setup significantly improves the signal-
to-noise ratio under outdoor conditions. When the design
condition falls below F < Fmin, the frequency patterns limit
the measurement resolution. Conversely, exceeding this value
(F > Fmin), the pattern generation frequency will be defined
between the range of Fpatterns = 40 kHz and FADC = 125 MHz,
allowing us to obtain an improved measurement rate of three
times faster:

Fmin =
FADC

Fpatterns
. (4)
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3. METHODS APPLYING DEEP IMAGE PRIOR
TO SUPER-RESOLUTION IN SPI

The proposed super-resolution (SR) technique primarily
focuses on the task of reconstructing an image of high resolution
(HR) from a low-resolution (LR) SPI image. When employing
deep learning for an SR image, we achieve image generation by
training generator/decoder networks, denoted as x̂ = fθ (z),
where z represents a random code vector and x̂ ∈RH x W is the
resulting image. Here, θ denotes the network parameters, and H
and W represent the image’s dimensions. This network consists
of convolution, upsampling, and nonlinear activation functions
to generate the HR image, as illustrated in Eq. (5) [29], where
various factors are optimized to improve the super-resolution
output [29]:

x̂ ∗ =min
x̂

E (x̂ ; x̂0)+U(x̂ ), (5)

where the function E (x ; x0) is defined as

E (x̂ ; x̂0)=
∥∥d(x̂ )− x̂0

∥∥2
, (6)

where d(·) :Rt H x W
→RH x W represents the downsam-

pling operator that resizes an image by factor t , while x0

denotes a low-resolution image. The term U(x , y )=∑
(∇x I (x , y )+∇y I (x , y )) represents the total variation

(TV) of the image I (x , y ) [41,42], which is utilized in single-
image super-resolution for the convergence of TV, encouraging
solutions to contain uniform regions [43]. The objective is to
find the high-resolution image x̂ that, when downsampled,
matches the low-resolution image x̂0. The minimization θ∗

is obtained using an optimizer such as gradient descent, with
parameters initialized randomly. After minimization, the
restored high-resolution image x̂ ∗ is received and updated
iteratively during restoration.

4. INTEGRATING DIP WITH GANS FOR
ENHANCED SUPER-RESOLUTION

In the context of GANs [44], the SR technique relies on the
integration of a generator and a discriminator. The generator
network, denoted as G , creates the high-resolution image from
a low-resolution input. The discriminator network, denoted
as D, aims to distinguish between real high-resolution images
and those generated by the generator. The generator can be
expressed as x̂ = GθG (z), where θG represents the parameters
of the generator network, and z is a random input vector. The
discriminator can be expressed as DθD (x̂ ), where θD represents
the parameters of the discriminator network. The discriminator
is trained to maximize the following objective function [45]:

L D =E
[
log DθD (xreal)

]
+E

[
log(1− DθD (x̂ ))

]
, (7)

where xreal represents real SR images, while x̂ denotes the images
generated by the generator. In the process of discrimination
between real or fake, the discriminator assigns a high probability
(close to 1) to the term log DθD (xreal), indicating that they are
indeed real, and assigns a low probability (close to 0) to the term
log(1− DθD (x̂ )), indicating that they are fake. During train-
ing, it iteratively updates its parameters θD to maximize L D,
enhancing its ability to differentiate real images from generated

ones. The GAN framework merges the objectives of both the
generator and the discriminator into a single min-max optimiza-
tion problem, enhanced by the integration of DIP, as shown in
Eq. (8):

min
θG

max
θD

L D + E (x̂ − x̂0)+U(x̂ ). (8)

The optimization in Eq. (8) allows for the adjustment of the
generator network’s weights based on the combined objec-
tive, incorporating the prior knowledge encoded in the DIP
framework.

A. Image Enhancement through Deep Learning
Architectures

To enhance the processing of SR images through neural net-
works, various model types were considered, including UNet,
U2Net, Res-U2Net, and combinations of GAN with StyleGAN
or StyleGAN2. These models were trained using the PyTorch
framework in Python, with the Adam optimizer and a stopping
criterion set below 10−4. Initially, we focus on the implementa-
tion and optimization of UNet, U2Net, and Res-U2Net models
in the generator stage:

• Case 1: The UNet model was utilized for SR-SPI [see
Fig. 3(a)]. The model’s architecture was customized to handle
varying resolutions, featuring interconnected downsampling
and upsampling blocks. The model consisted of two main
components:

1. Downsampling: The encoder section utilized convo-
lutional layers and max-pooling operations to decrease
the spatial dimensions of the input image, with a
sequential resolution reduction from 32, 64, 128, to
256.

2. Upsampling: The decoder portion gradually
enhanced the spatial resolution of the feature maps.

• Case 2: The U2Net model was utilized for super-
resolution tasks, providing flexibility and configurability
[refer to Fig. 3(b)]:

1. Initialization: Various parameters were defined for
the U2Net class, including the number of input and
output channels and feature scaling.

2. Layer Definitions: The network was structured with
encoding (downsampling) and decoding (upsampling)
stages.

3. Encoding (Downsampling): This component uti-
lized max-pooling operations, convolutional layers,
and filters to reduce the spatial dimensions of the input
image.

4. Upsampling: Transposed convolutional layers and
nearest-neighbor upsampling were employed to
increase feature maps’ spatial dimensions from 1024 to
128.

5. Final Layer: A convolutional layer with a specified
number of output channels applied the sigmoid
activation function to the output.

6. Forward Pass: The input was propagated through the
network in a cascading manner, with feature maps from
downsampling stages being concatenated.
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Fig. 3. SR-SPI neural network model architecture for cases 1 to 3:
(a) UNet model, (b) U2Net model, and (c) Res-U2Net model.

7. Output: The network returned an enhanced-
resolution image.

• Case 3: The ResU2Net-based architecture was used,
offering flexibility to add more layers, concatenate the input
image with feature maps, and customize the network for
super-resolution image tasks [see Fig. 3(c)]:

1. Initialization: Parameters were set to configure the
network’s architecture, including input and output
channels and feature scaling.

2. Additional Layers: Extra downsampling and
upsampling layers were added to capture finer image
details.

3. Upsampling: Four upsampling blocks increased spa-
tial dimensions while decreasing channel numbers
using sequence filters from 32 to 1024.

4. Forward Pass: The input image was processed through
the network, with the downsampling results being con-
catenated.

Fig. 4. SR-SPI neural network model architecture for cases 4 and 5:
(a) GAN model and (b) StyleGAN/StyleGAN2.

5. Interpolation: An interpolation step ensured a
minimum input size of 128×128 pixels.

6. Final Layer: The final convolutional layer produced
the output with the desired number of channels,
applying a sigmoid activation function.

For the GAN, StyleGAN, and StyleGAN2 models, we have
defined the following structure:

• Case 4: This super-resolution model employs a GAN,
as illustrated in Fig. 4(a). The model features two primary
components: the generator and the discriminator. The gen-
erator’s role is to enhance low-resolution images by creating
high-resolution counterparts, while the discriminator aims to
distinguish between genuine and generated high-resolution
images. Through adversarial training, these components col-
laborate to forge high-resolution images that appear exceedingly
realistic to the extent that they can deceive the discriminator [see
Eq. (7)]. The architecture of the generator incorporates multiple
UNets, based on a UNet design, which effectively captures
and reconstructs image details. The discriminator, conversely,
consists of convolutional layers that assess the authenticity of
images, outputting a probability value ranging from 0 to 1.

• Case 5: StyleGAN and StyleGAN2 are advanced architec-
tures [refer to Fig. 4(b)] that seamlessly integrate the generator
and discriminator components. For this model, we define the
style mean as 0.3 and the standard deviation as 0.01, based on
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Fig. 5. Simulation enhancing SPI reconstruction through deep prior methods using 30% patterns from Corel-1K dataset: (a) Cases 1 to 3 involve
UNet, U2Net, and ResU2Net with 1500 iterations, and case 4 utilizes GAN-UNet, GAN-U2Net, and GAN-ResU2Net with 500 iterations. (b) In
case 5, StyleGAN is applied with 250 iterations, while StyleGAN2 utilizes 150 iterations.

laboratory testing. During training, these models take as input
an image along with style mean and standard deviation values.
The generator in StyleGAN produces super-resolution images
with unique styles by applying Adaptive Instance Normalization
(AdaIN) based on the provided style parameters. StyleGAN2
includes enhancements such as MiniBatchStdDev, improving
image quality and discriminator performance. The generator in
StyleGAN can have multiple heads, each utilizing a UNet-like
architecture, with their outputs combined to produce stylized
super-resolution images. The discriminator in StyleGAN and
StyleGAN2 employs convolutional layers with leaky ReLU

activation and instance normalization to determine the proba-
bility of an image being real or fake. Additionally, StyleGAN2
introduces a smoothing operation to generate smoother images.
This process involves using AdaIN to stylize the content image
and MiniBatchStdDev to further enhance StyleGAN2.

B. Assessing the Efficacy of SR-SPI Methods and
Simulations

The DIP method is a systematic approach to improving
SPI image reconstruction. This study examined six cases to



Research Article Vol. 42, No. 2 / February 2025 / Journal of the Optical Society of America A 207

Fig. 6. In our experimental study, we significantly improved the resolution of NIR-SPI images from 32× 32 to 128× 128 using advanced deep
image prior (DIP) techniques. More details can be found in Section 4.A. These models successfully achieved a fourfold increase in resolution at a dis-
tance of 50 cm. We test experimentally several network designs, adjusting the number of training iterations accordingly. The UNet and U2Net mod-
els were trained for 1500 iterations, while ResU2Net only required 500 iterations. GAN-based models like GAN-UNet, GAN-U2Net, and GAN-
ResU2Net needed 500 iterations. The StyleGAN and StyleGAN2 models were trained much faster, completing their training in just 250 and 150
iterations, respectively.

determine the effect of different neural network architectures
and iteration counts on image quality improvement. The first
four cases involved UNet, U2Net, ResU2Net, GAN-UNet,
GAN-U2Net, and GAN-ResU2Net [see Fig. 5(a)]. In the sim-
ulation results, we observe artifacts that were removed during
testing by applying a combination of low-pass filtering and 2D
edge-adaptive filtering [46]. In the test, we determined that
this type of modeling can achieve enhanced image quality in
terms of PSNR and SSIM using a low number of iterations, with
iteration counts ranging from 500 to 1500. The complexity of
the neural network was closely observed throughout the simula-
tion, resulting in significant improvements in image quality and

a reduction in the required number of iterations while main-
taining high-quality images. In case 5, StyleGAN/StyleGAN2
were used with iteration counts set at 250 and 150, respec-
tively [see Fig. 5(b)]. Our investigation into neural network
complexity significantly enhanced image quality and validated
the efficacy of DIP methods for SPI image reconstruction. We
employed objects from the Corel-1K image dataset [47], resized
to 32× 32 pixels for our simulations. We conducted perform-
ance simulations using 30% Hadamard patterns [1], employing
approximately 320 such patterns. These simulations were rig-
orously assessed using metrics such as PSNR, SSIM, and FID
to verify their effectiveness across the various configurations
outlined in our study (refer to Fig. 6).
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5. RESULTS FROM EXPERIMENTAL
VALIDATIONS

We evaluated the performance of our NIR-SPI vision system
using a specialized test setup. A comprehensive description
of the experimental laboratory configuration can be found in
Supplement 1, Section 1. Our main goal was to assess the image
reconstruction capabilities of the prototype NIR-SPI system.
For this purpose, we tested objects measuring 140× 70 mm
(refer to Fig. 6) at a distance testing of 50 cm to the NIR-SPI
system. Subsequently, we evaluated the enhanced SPI image
using the neural network model introduced in Section 4. To
validate the NIR-SPI performance using the DIP method in
conjunction with various neural networks (see Table 1), we
implement two tests, and parameters such as PSNR> 20 dB,
SSIM> 0.5, and FID< 20 were evaluated [35].

A. Testing the Enhanced NIR-SPI Imaging Using the
SR Deep-Prior Method

We comprehensively evaluated different deep-prior network
models in the context of NIR-SPI testing and present our
findings in this study (see Fig. 6). Our primary focus was on
critical performance metrics and the number of iterations
required for convergence. The PSNR metric improved from
NN-UNet to StyleGAN2-UNet. StyleGAN2-UNet achieved
the highest PSNR score of 22.1 dB, indicating that it can

produce high-quality images compared to other methods.
Similarly, SSIM, a measure of structural similarity, consistently
improved as we used more advanced models, demonstrating
that more profound and sophisticated models create images that
closely resemble ground truth images. StyleGAN2-UNet also
performed the best, with an SSIM score of 0.64. In contrast,
FID, which measures the dissimilarity between generated and
authentic images, showed that StyleGAN-ResU2Net outper-
formed its counterparts with a lower FID value of 29.25. These
values suggest that StyleGAN-ResU2Net is better at generating
images that closely mimic authentic images (see Table 1). Our
analysis also showed that GANs have faster convergence rates
than non-GAN models, with lower values indicating speedier
convergence. Therefore, StyleGAN2-UNet is best for image
quality, while StyleGAN-ResU2Net is best for image fidelity.
The choice between these models is based on the task’s specific
requirements, carefully balancing image quality and fidelity
considerations with computational resources and convergence
speed. Compared to other GAN-based SR models using deep
learning (DL) (see Table 2), this model achieves acceptable SR
quality from low-resolution SPI images (see Fig. 7). Its per-
formance is evaluated in scale, PSNR, SSIM, and the number of
iterations. Unlike other methods requiring numerous iterations
to enhance image quality, this model delivers comparable results
without requiring an extensive dataset.

Table 1. PSNR, SSIM, and FID Score Improvements Were Observed in the Images Processed by the NIR-SPI
Testing Simulation (Sim) with Dataset Corel-1K and Laboratory (Lab) Using DIP Models with 30% Hadamard
Patterns

a

Method PSNR Sim (dB)↑ SSIM Sim↑ FID Sim↓ PSNR Lab (dB)↑ SSIM Lab↑ FID Lab↓ Iter

NN-UNet 17.90 0.60 45.18 20.36 0.60 46.05 1500
GAN-UNet 18.10 0.61 43.71 20.94 0.62 44.12 500
StyleGAN-UNet 18.23 0.62 42.83 21.96 0.63 40.35 250
StyleGAN2-UNet 18.30 0.63 40.00 22.10 0.64 41.81 150
NN-U2Net 19.46 0.64 36.79 19.92 0.62 27.86 1500
GAN-U2Net 20.50 0.65 35.81 19.50 0.65 31.88 500
StyleGAN-U2Net 21.90 0.67 33.47 20.61 0.67 34.14 250
StyleGAN2-U2Net 22.08 0.69 32.41 21.23 0.68 35.90 150
NN-ResU2Net 22.97 0.72 31.65 21.29 0.69 34.12 1500
GAN-ResU2Net 23.13 0.73 30.78 21.86 0.71 38.61 500
StyleGAN-ResU2Net 25.38 0.75 29.90 22.00 0.72 31.00 250
StyleGAN2-ResU2Net 28.12 0.77 23.83 22.45 0.74 29.25 150

aThe bold values correspond to the optimized model proposed. This model effectively upscaled images from a resolution of 32× 32 to a high resolution of 128×
128, achieving a fourfold increase in image resolution.

Table 2. Numerical Evaluation in Various GANs for Image Super-Resolution Based on Different Training Parameters
Including Scale, PSNR, SSIM, Iteration, and Training Methods

Method Scale PSNR (dB)↑ SSIM↑ Iter Training

DGAN [48] ×6 28.62 0.90 25 K Supervised
ESRGAN [49] ×2 31.99 0.66 300 K Supervised
SRGAN [50] ×2 25.80 0.70 200 K Supervised
PSSR [51] ×4 21.32 0.55 300 K Semi-supervised
CTGAN [52] ×4 27.90 0.74 60 K Semi-supervised
DNSR [53] ×2 26.15 0.70 10 K Unsupervised
CycleSR [54] ×4 23.80 0.59 500 k Unsupervised
Our ×4 22.45 0.74 150 Unsupervised

https://doi.org/10.6084/m9.figshare.27941709
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Fig. 7. Comparison of image super-resolution techniques applied to low-resolution SPI images. The figure presents results from various mod-
els: DGAN, ESRGAN, SRGAN, PSSR, CTGAN, DNSR, CycleSR, and the proposed model (“Our”). The proposed model demonstrates superior
image clarity and detail preservation compared to the other approaches, showcasing its effectiveness in improving resolution in challenging low-light
and noisy conditions.

6. CONCLUSION

In this paper, we evaluated the effectiveness of a DIP-based
SR method in a NIR-SPI system with active illumination. We
studied numerically and experimentally using UNet, U2Net,
ResU2Net, GAN, and StyleGAN neural network configura-
tions to identify the optimal setup for enhancing the resolution
of SPI imaging. Our results showed that the resolution of
NIR-SPI images was successfully increased from 32× 32 to
a super-resolved 128× 128, achieving a four-fold increase in
resolution. Our results significantly enhance image quality for
SPI low-resolution applications with a low number of iterations
(as demonstrated in Table 2).

We evaluate our results based on key performance met-
rics such as PSNR, SSIM, FID, and the number of iterations
required by the DIP method for each case. Our study suggests
that the StyleGAN2 configuration, which uses a generator based
on the ResU2Net neural network, outperforms other configu-
rations by striking a remarkable balance between image quality
and the number of iterations needed. This research advances our
understanding of DIP in SPI and holds practical implications.
It provides a significant advantage in contexts where datasets
may be limited and when training a network for image quality
enhancement is challenging.

Capturing images in low-contrast environments or high-
noise conditions presents a challenge for visible light imaging.
In contrast, NIR imaging delivers substantially better results
in these challenging scenarios, enhancing image detail sig-
nificantly. This advancement is made possible through the
application of the proposed DIP-GAN method introduced in
this study. We hope that the presented approach can be extended
to study other network architectures, and it opens up promising
avenues for future applications and research within SPI imaging
applications, as well as new experimental advances in this field.
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